An Improved Tag Dictionary for Faster Part-of-Speech Tagging
نویسنده
چکیده
Ratnaparkhi (1996) introduced a method of inferring a tag dictionary from annotated data to speed up part-of-speech tagging by limiting the set of possible tags for each word. While Ratnaparkhi’s tag dictionary makes tagging faster but less accurate, an alternative tag dictionary that we recently proposed (Moore, 2014) makes tagging as fast as with Ratnaparkhi’s tag dictionary, but with no decrease in accuracy. In this paper, we show that a very simple semi-supervised variant of Ratnaparkhi’s method results in a much tighter tag dictionary than either Ratnaparkhi’s or our previous method, with accuracy as high as with our previous tag dictionary but much faster tagging—more than 100,000 tokens per second in Perl.
منابع مشابه
Parallelization of Maximum Entropy POS Tagging for Bahasa Indonesia with MapReduce
In this paper, MapReduce programming model is used to parallelize training and tagging proceess in maximum entropy part of speech tagging for Bahasa Indonesia. In training process, MapReduce model is implemented dictionary, tagtoken, and feature creation. In tagging process, MapReduce is implemented to tag lines of document in parallel. The training experiments showed that total training time u...
متن کاملمعرفی رویکردی ماشینی با استفاده از الگوریتم لسک و برچسبدهی نحوی جهت رفع ابهام از معنای کلمات
The present study introduces a machine-based approach for word sense disambiguation (WSD). In Persian, a morphologically complex language, POS tag which lots of homographs are made, one way for doing WSD is allocating the right Part Of Speech (POS) tags to words prior to WSD. Since the frequency of noun and adjective homographs in different Persian POS tag text corpuses is high, POS tag disambi...
متن کاملUnsupervised Part of Speech Tagging Using Unambiguous Substitutes from a Statistical Language Model
We show that unsupervised part of speech tagging performance can be significantly improved using likely substitutes for target words given by a statistical language model. We choose unambiguous substitutes for each occurrence of an ambiguous target word based on its context. The part of speech tags for the unambiguous substitutes are then used to filter the entry for the target word in the word...
متن کاملJoint Prediction of Morphosyntactic Categories for Fine-Grained Arabic Part-of-Speech Tagging Exploiting Tag Dictionary Information
Part-of-speech (POS) tagging for morphologically rich languages such as Arabic is a challenging problem because of their enormous tag sets. One reason for this is that in the tagging scheme for such languages, a complete POS tag is formed by combining tags from multiple tag sets defined for each morphosyntactic category. Previous approaches in Arabic POS tagging applied one model for each morph...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کامل